36 research outputs found

    Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion

    Full text link
    Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the β-sheet structure. While the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. In order to map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless they converted efficiently. Only the disulfides which tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structure segments, we provide evidence for the conservation of secondary structure elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention

    HMG-CoA reductase is regulated by environmental salinity and its activity is essential for halotolerance in halophilic fungi

    Get PDF
    The activity and level of HMG-CoA reductase (HMGR) were addressed in halophilic fungi isolated from solar saltpans. Representative fungi belonging to the orders Dothideales, Eurotiales and Wallemiales have a specific pattern of HMGR regulation, which differs from salt-sensitive and moderately salt-tolerant yeasts. In all of the halophilic fungi studied, HMGR amounts and activities were the lowest at optimal growth salinity and increased under hyposaline and hypersaline conditions. This profile paralleled isoprenylation of cellular proteins in H. werneckii. Inhibition of HMGR in vivo by lovastatin impaired the halotolerant character. HMGR may thus serve as an important molecular marker of halotolerance

    Codi-strat - an interdisciplinary network geared towards sustainable management of chronic and infective diseases

    Get PDF
    A collaborative effort of clinicians, infectologists, molecular biologists, pharmacologists, veterinarians, bioinformaticians, management and education specialists is united in order to develop novel strategies of detecting early stages of chronic and infective diseases, their prevention and therapy. CODI-STRAT integrates 15 centers conducting leading–edge research of chronic inflammatory/infective diseases from seven European (five Mediterranean) countries and the USA, with specific aims to: i) establish long-standing partner center cross-disciplinary collaborations for clinical studies and research, ii) provide young investigators with broad and content-driven training and employability and iii) promote scientists up-skilled in genomics, transcriptomics, tissue expression, human serological and genetic studies, bioinformatics, chip technology, cell cultures and animal models, all directed toward clinical translation and chronic/infective disease management. This manuscript outlines the goals, partner roles and development of CODI-STRAT and its programme.peer-reviewe

    Electron Tomography of Fusiform Vesicles and Their Organization in Urothelial Cells

    Get PDF
    The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 µm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4–15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm

    Urothelial Plaque Formation in Post-Golgi Compartments

    Get PDF
    Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them “uroplakin-positive transporting vesicles” (UPTVs). ii) Spherical-to-flattened vesicles, termed “immature fusiform vesicles” (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened “mature fusiform vesicles” (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell

    Repeated BCG treatment of mouse bladder selectively stimulates small GTPases and HLA antigens and inhibits single-spanning uroplakins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following repeated intravesical BCG therapy.</p> <p>Methods</p> <p>Mice were transurethrally instilled with BCG or pyrogen-free on days 1, 7, 14, and 21. Seven days after the last instillation, urothelia along with the submucosa was removed and amplified ds-DNA was prepared from control- and BCG-treated bladder mucosa and used to generate suppression subtractive hybridization (SSH). Plasmids from control- and BCG-specific differentially expressed clones and confirmed by Virtual Northern were then purified and the inserts were sequenced and annotated. Finally, chromatin immune precipitation combined with real-time polymerase chain reaction assay (ChIP/Q-PCR) was used to validate SSH-selected transcripts.</p> <p>Results</p> <p>Repeated intravesical BCG treatment induced an up regulation of genes associated with antigen presentation (B2M, HLA-A, HLA-DQA1, HLA-DQB2, HLA-E, HLA-G, IGHG, and IGH) and representatives of two IFNγ-induced small GTPase families: the GBPs (GBP1, GBP2, and GBP5) and the p47GTPases (IIGTP1, IIGTP2, and TGTP). Genes expressed in saline-treated bladders but down-regulated by BCG included: the single-spanning uroplakins (UPK3a and UPK2), SPRR2G, GSTM5, and RSP 19.</p> <p>Conclusion</p> <p>Here we introduced a hypothesis-generator approach to determine key genes involved in the urothelium/sumbmucosa responses to BCG therapy. Urinary bladder responds to repeated BCG treatment by up-regulating not only antigen presentation-related genes, but also GBP and p47 small GTPases, both potentially serving to mount a resistance to the replication of the <it>Mycobacterium</it>. It will be of tremendous future interest to determine whether these immune response cascades play a role in the anti-cancer effects exerted by BCG.</p

    Fas Signalling Promotes Intercellular Communication in T Cells

    Get PDF
    Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis), formation of tunneling nanotubes (TNTs) and release of microvesicles (MVs). In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase) in an early time-frame of stimulation (30 min), and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells) via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole) markedly reduced this exchange (inhibition percentage: >40% and >50% respectively), suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase) and a significant MVs uptake (6 fold of increase) by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death) promoted by FasL

    Intercellular Transport of Oct4 in Mammalian Cells: A Basic Principle to Expand a Stem Cell Niche?

    Get PDF
    Background: The octamer-binding transcription factor 4 (Oct4) was originally described as a marker of embryonic stem cells. Recently, the role of Oct4 as a key regulator in pluripotency was shown by its ability to reprogram somatic cells in vitro, either alone or in concert with other factors. While artificial induction of pluripotency using transcription factors is possible in mammalian cell culture, it remains unknown whether a potential natural transfer mechanism might be of functional relevance in vivo. The stem cell based regeneration of deer antlers is a unique model for rapid and complete tissue regeneration in mammals and therefore most suitable to study such mechanisms. Here, the transfer of pluripotency factors from resident stem cell niche cells to differentiated cells could recruit more stem cells and start rapid tissue regeneration. Methodology/Principal Findings: We report on the ability of STRO-1 + deer antlerogenic mesenchymal stem cells (DaMSCs) to transport Oct4 via direct cell-to-cell connections. Upon cultivation in stem cell expansion medium, we observed nuclear Oct4 expression in nearly all cells. A number of these cells exhibit Oct4 expression not only in the nucleus, but also with perinuclear localisation and within far-ranging intercellular connections. Furthermore, many cells showed intercellular connections containing both F-actin and a-tubulin and through which transport could be observed. To proof that intercellular Oct4-transfer has functional consequences in recipient cells we used a co-culture approach with STRO-1 + DaMSCs and a murine embryonic fibroblast indicator cell line (Oct4-GFP MEF). In this cell line a reporter gene (GFP) unde

    Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma

    Get PDF
    Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion

    Wnt Signalling Pathway Parameters for Mammalian Cells

    Get PDF
    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model
    corecore